Main Page   Class Hierarchy   Alphabetical List   Compound List   File List   Compound Members   Related Pages  

FClassicAnisotropicSpace Class Reference

#include <FClassicAnisotropicSpace.hpp>

Inheritance diagram for FClassicAnisotropicSpace:

Inheritance graph
[legend]
Collaboration diagram for FClassicAnisotropicSpace:

Collaboration graph
[legend]
List of all members.

Detailed Description

Classic Anisotropic Spatial Discretisation.

Author:
Bernard De Cuyper
Version:
1.15
Date:
14/08/2004
Remarks:
Tornado1 Spatial discretisation
nonlinearDiffusion.gif

Nonlinear Diffusion

convexPotential1.gif

Convex Potential

Remarks:
3.315 is essential, the flux increase when s is smaller than the contrast (denoising) and the flux decreases when s is greater than the contrast (enhancing)
 
Purpose:        2D Classic Anisotropic Discretisation used in nxn Linear Solver
                        Used to generate a 2D Classic Anisotropic Discretisation,....

                Nonlinear Diffusion tend to segment or flat images,(However Lysaker proves non linearity can be obtained)
                It has the advantage to soft regions, and to contrast/enhance edges.
                It is less recommanded in strong noise images.

Paper:  "Efficient Image Segmentation Using Partial Differential Equations and Morphology.",
                Joachim Weickert, Technical Report 3/2000, Computer Science Series, 
                DIKU, University of Copenhagen, Denmark.

                "Evaluation of Diffusion Schemes for Multi-scale Watershed Segmentation.", Erik B. Dam,
                Thesis 2000, Computer Science, University of Copenhagen.

                "Edge-Preseving Noise Removal, Part I: Second-Order Anisotropic Diffusion.",
                Seongjai Kim, Technical Report 2001-09, University of Kentucky.

                "MinBAD: The Minimum-Biased Anisotropic Diffusion for Noise Removal.",
                Seongjai Kim & all, Technical Report 2002-06, University of Kentucky.

                "PDE-based image restoration,II: Numerical schemes and color image denoising.",
                Seongjai Kim & all, Technical Report 2003-08, University of Kentucky.

                "Image Analysis & Edge-Preseving Noise Removal.",
                Seongjai Kim, Presentation 2003, University of Kentucky.
  

                

@ Copyrights: Bernard De Cuyper 2004, Eggs & Pictures. MIT/Open BSD copyright model.


Public Methods

 FClassicAnisotropicSpace (double sigma=2.0, double acontrast=1.0, int diffusivity=0, int gradType=0)
virtual ~FClassicAnisotropicSpace ()
virtual void init (FImage *uk)
virtual AFSymMatrixgetA (float tau, FImage *uk, AFSymMatrix *A=0)
virtual AFSymMatrixgetRowA (float tau, FImage *uk, int row, AFSymMatrix *A1=0)
virtual AFSymMatrixgetColA (float tau, FImage *uk, int col, AFSymMatrix *A2=0)

Protected Methods

virtual FImagegValues (FImage *src, FImage *dest=0)

Protected Attributes

float sigmaRegularisation
float contrast
float contrast2
int diffusivity
AbsFImageFilterblurrer
FGradientNormOpgradient
FImageuSigma
FImageg


The documentation for this class was generated from the following files:
SourceForge.net Logo
Restoreinpaint sourceforge project `C++/Java Image Processing, Restoration, Inpainting Project'.

Bernard De Cuyper: Open Project Leader: Concept, design and development.
Bernard De Cuyper & Eddy Fraiha 2002, 2003. Bernard De Cuyper 2004. Open and free, for friendly usage only.
Modifications on Belgium ground of this piece of artistic work, by governement institutions or companies, must be notified to Bernard De Cuyper.
bern_bdc@hotmail.com