Main Page   Class Hierarchy   Alphabetical List   Compound List   File List   Compound Members   Related Pages  

FSimpleTVInpaintingSpace Class Reference

#include <FSimpleTVInpaintingSpace.hpp>

Inheritance diagram for FSimpleTVInpaintingSpace:

Inheritance graph
[legend]
Collaboration diagram for FSimpleTVInpaintingSpace:

Collaboration graph
[legend]
List of all members.

Detailed Description

2D HeatFlow Spatial Discretisation

Author:
Bernard De Cuyper
Version:
1.15
Date:
22/09/2004
Remarks:
Tornado1 Spatial discretisation
Bug:
OK with unsplitted methods, problems with splitted methods
variationalRestoration.gif

Variational Image Restoration

varConvexPotential.gif

Variational Convex Potential

 
Purpose:        Variational Restoration uses a reaction diffusion approach,
                the reaction term ensures that the evolution is always near the original image.

                It is more robust against strong noise that classic diffusion, but do not enhance edges.

                ut= div( g(|grad(u)|^2) grad(u)) + beta*(f-u)

                g(s2)= 1.0/sqrt(1.0+ s2/contrast*contrast);

                Variational Restoration can be used in cascade to do a pyramidal restoration.

Paper:  "Mathematical Models for Local Deterministic Inpaintings", Tony Chan & J. Shen,
                Report 2000, UCLA, USA.

                "Efficient Image Segmentation Using Partial Differential Equations and Morphology.",
                Joachim Weickert, Technical Report 3/2000, Computer Science Series, 
                DIKU, University of Copenhagen, Denmark.

                "Evaluation of Diffusion Schemes for Multi-scale Watershed Segmentation.", Erik B. Dam,
                Thesis 2000, Computer Science, University of Copenhagen.

                "Edge-Preseving Noise Removal, Part I: Second-Order Anisotropic Diffusion.",
                Seongjai Kim, Technical Report 2001-09, University of Kentucky.

                "MinBAD: The Minimum-Biased Anisotropic Diffusion for Noise Removal.",
                Seongjai Kim & all, Technical Report 2002-06, University of Kentucky.

                "PDE-based image restoration,II: Numerical schemes and color image denoising.",
                Seongjai Kim & all, Technical Report 2003-08, University of Kentucky.

                "Image Analysis & Edge-Preseving Noise Removal.",
                Seongjai Kim, Presentation 2003, University of Kentucky.
                

@ Copyrights: Bernard De Cuyper 2004, Eggs & Pictures. MIT/Open BSD copyright model.


Public Methods

 FSimpleTVInpaintingSpace (double sigma=2.0, double acontrast=1.0, double abeta=0.0, int diffusivity=0, int gradType=0)
virtual ~FSimpleTVInpaintingSpace ()
virtual void setI0 (FImage *u0)
virtual FImagegetI0 ()
virtual void setInpaintingDomain (AnImage *area)
virtual AnImagegetInpaintingDomain ()
virtual void setExtensionDomain (AnImage *area)
virtual AnImagegetExtensionDomain ()
virtual void setTauRight (float t)
virtual float getTauRight ()
virtual AFSymMatrixgetA (float tau, FImage *uk, AFSymMatrix *A=0)
virtual FloatVectorgetB (FImage *ik, FloatVector *uk=0)
virtual AFSymMatrixgetRowA (float tau, FImage *uk, int row, AFSymMatrix *A1=0)
virtual AFSymMatrixgetColA (float tau, FImage *uk, int col, AFSymMatrix *A2=0)
virtual FloatVectorgetRowB (FImage *ik, int row, FloatVector *uk=0)
virtual FloatVectorgetColB (FImage *ik, int col, FloatVector *uk=0)

Protected Methods

virtual FImagegValues (FImage *src, FImage *dest=0)

Protected Attributes

float tauRight
float beta
float betaCorrection
FImagef
AnImageinpaintingDomain
AnImageextensionDomain


The documentation for this class was generated from the following files:
SourceForge.net Logo
Restoreinpaint sourceforge project `C++/Java Image Processing, Restoration, Inpainting Project'.

Bernard De Cuyper: Open Project Leader: Concept, design and development.
Bernard De Cuyper & Eddy Fraiha 2002, 2003. Bernard De Cuyper 2004. Open and free, for friendly usage only.
Modifications on Belgium ground of this piece of artistic work, by governement institutions or companies, must be notified to Bernard De Cuyper.
bern_bdc@hotmail.com