#include <FastIca.hpp>
Collaboration diagram for FastIca:

Purpose: General fast ICA.
Paper: "Simple Neural Models for Independent Component Analysis.",
Aapo Hyvarinen and Erkki Oja, 18/02/1997 , Report University of Technology, Helsinski.
"One Unit Learning Rules for Independent Component Analysis.",
Aapo Hyvarinen and Erkki Oja, 1997 , Helsinski.
@ Copyrights: Bernard De Cuyper & Eddy Fraiha 2003, Eggs & Pictures. MIT/Open BSD copyright model.
Public Methods | |
| FastIca (int nx, double eps=1.0e-4, bool sphered=true, double ralpha=1.0) | |
| virtual | ~FastIca () |
| virtual int | numberOfUnits () |
| virtual int | maxUnits () |
| virtual void | add (SingleUnitFastIca *aunit) |
| virtual void | set (int i, AContrastFunction *func) |
| virtual SingleUnitFastIca * | get (int i) |
| virtual RealVector * | getW (int i) |
| virtual int | getBest (RealVector *src) |
| virtual void | init (int size) |
| virtual void | startLearning () |
| virtual void | learn (RealVector *sample) |
| virtual bool | endLearning () |
| virtual RealVector * | forward (RealVector *src) |
| virtual void | output () |
Protected Attributes | |
| int | n |
| int | nmax |
| SingleUnitFastIca ** | unit |
| int | count |
| bool | rawDataUsed |
| RealVector * | mean |
| RealSMatrix * | C |
| RealSMatrix * | Cinv |
| RealVector * | wTnew_C |
| double | alpha |
![]() |
