#include <FastIca.hpp>
Collaboration diagram for FastIca:
Purpose: General fast ICA. Paper: "Simple Neural Models for Independent Component Analysis.", Aapo Hyvarinen and Erkki Oja, 18/02/1997 , Report University of Technology, Helsinski. "One Unit Learning Rules for Independent Component Analysis.", Aapo Hyvarinen and Erkki Oja, 1997 , Helsinski.
@ Copyrights: Bernard De Cuyper & Eddy Fraiha 2003, Eggs & Pictures. MIT/Open BSD copyright model.
Public Methods | |
FastIca (int nx, double eps=1.0e-4, bool sphered=true, double ralpha=1.0) | |
virtual | ~FastIca () |
virtual int | numberOfUnits () |
virtual int | maxUnits () |
virtual void | add (SingleUnitFastIca *aunit) |
virtual void | set (int i, AContrastFunction *func) |
virtual SingleUnitFastIca * | get (int i) |
virtual RealVector * | getW (int i) |
virtual int | getBest (RealVector *src) |
virtual void | init (int size) |
virtual void | startLearning () |
virtual void | learn (RealVector *sample) |
virtual bool | endLearning () |
virtual RealVector * | forward (RealVector *src) |
virtual void | output () |
Protected Attributes | |
int | n |
int | nmax |
SingleUnitFastIca ** | unit |
int | count |
bool | rawDataUsed |
RealVector * | mean |
RealSMatrix * | C |
RealSMatrix * | Cinv |
RealVector * | wTnew_C |
double | alpha |