#include <IcaNet.hpp>
Collaboration diagram for IcaNet:
Purpose: Define a sphered ICA single cell neural net to get sub-gaussian or super-gaussian IC component. Paper: "Simple Neural Models for Independent Component Analysis.", Aapo Hyvarinen and Erkki Oja, 18/02/1997 , Report University of Technology, Helsinski. "One Unit Learning Rules for Independent Component Analysis.", Aapo Hyvarinen and Erkki Oja, 1997 , Helsinski.
@ Copyrights: Bernard De Cuyper & Eddy Fraiha 2003, Eggs & Pictures. MIT/Open BSD copyright model.
Public Methods | |
IcaNet (double rate, double ax, double bx, bool superType) | |
IcaNet (double rate, double ax, double bx, double cx, bool superType) | |
virtual | ~IcaNet () |
virtual RealVector * | getW () |
virtual void | init (int size) |
virtual void | learning (RealVector *sample, int nmax=1) |
virtual double | forward (RealVector *src) |
virtual void | output () |
Protected Methods | |
virtual double | g (double u) |
virtual double | gMin (double u) |
virtual double | gPlus (double u) |
virtual void | learn (RealVector *sample) |
Private Attributes | |
bool | superGaussian |
bool | combined |
double | learnRate |
double | a |
double | b |
double | c |
RealVector * | w |
double | wNorm2 |
RealVector * | dw |