#include <IcaNet2_1.hpp>
Collaboration diagram for IcaNet2_1:

Purpose: Define a two unit non-sphered ICA single cell neural net
to get automatically a sub-gaussian or super-gaussian IC component.
Paper: "Simple Neural Models for Independent Component Analysis.",
Aapo Hyvarinen and Erkki Oja, 18/02/1997 , Report University of Technology, Helsinski.
"One Unit Learning Rules for Independent Component Analysis.",
Aapo Hyvarinen and Erkki Oja, 1997 , Helsinski.
@ Copyrights: Bernard De Cuyper & Eddy Fraiha 2003, Eggs & Pictures. MIT/Open BSD copyright model.
Public Methods | |
| IcaNet2_1 (double rate=0.1, double weight=0.1) | |
| virtual | ~IcaNet2_1 () |
| virtual RealVector * | getW () |
| virtual bool | isSuperGaussian () |
| virtual void | init (int size) |
| virtual void | learning (RealVector *sample, int nmax=1) |
| virtual double | forward (RealVector *src) |
| virtual void | output () |
Protected Methods | |
| virtual void | learn (RealVector *sample) |
Private Attributes | |
| bool | superGaussian |
| double | learnRate |
| RealVector * | w |
| double | wNorm2 |
| RealVector * | dw |
| double | v |
| double | m2 |
| double | m4 |
| double | kurt |
![]() |
