Main Page   Class Hierarchy   Alphabetical List   Compound List   File List   Compound Members   Related Pages  

AFSplittedRestorationLS Class Reference

#include <AFSplittedRestorationLS.hpp>

Inheritance diagram for AFSplittedRestorationLS:

Inheritance graph
[legend]
Collaboration diagram for AFSplittedRestorationLS:

Collaboration graph
[legend]
List of all members.

Detailed Description

Abstract Float Splitted 2D solvers.

Author:
Bernard De Cuyper
Version:
1.155
Date:
14/05/2004
Remarks:
Tornado1 time discretisation for 2D restoration
 
Purpose:        Fast Computation of Splitted 2D Solvers

                One way is using the realtime Thomas LU model which provides constant time results
                in the semi-Implicit case:

            (I - tau * A) * uNew=  uOld

                Splitted solvers are designed for large image restoration, O(N) in time and space!!!

                Implicit solvers like ADI are also possible, more accurate but under certain conditions of timesteps.
                Implicit solvers are not absolutely stable, like semi-implicit one.

                ADI case: Splitted implicit solver using tridiagonals solvers (in case of five point stencils)
            (I - tau/2 * Ax) * u$=  [(I + tau/2 * Ay)] * uOld           // X-sweep
            (I - tau/2 * Ay) * u=  [(I + tau/2 * Ax)] * u$                      // Y-sweep

Papers: "Recursivity and PDE's in image processing", 
                        L. Alvarez, R. Deriche and F Santana, Spain 1998.

                "Efficient and Reliable Schemes for Nonlinear Diffusion Filtering", 
                        Joachim. Weickert & all, IEEE transactions on Image Processing, vol7, n3, March 1998.

                "Operator Splitting Techniques For Unsteady Navier Stokes Equations", 
                        Seongjai Kim, University of Kentucky, 2000. 

                "Fractional Time Stepping Methods for Unsteady Flow Problems", 
                        Seongjai Kim & Jim Douglas, University of Kentucky, 2000. 

                "Recursivity and PDE's in image processing", 
                        L. Alvarez, R. Deriche and F Santana, Spain 1998.

                "Numerical Receipes in C: Diffusion Equation in Multidimensions.",  p666,
                        William H. Press & all, Cambridge University Press, 1988.

                "Numerical Receipes in C: 17.6, Operator Splitting Methods and ADI.",  p681-688,
                        William H. Press & all, Cambridge University Press, 1988.


                Fast ADI_II (Kim 2000) is a DPR-ADI with splitting correction to "mimic the Cranck-Nicolson without error"

                
@ Copyrights: Bernard De Cuyper 2004, Eggs & Pictures. MIT/Open BSD copyright model.


Public Methods

 AFSplittedRestorationLS (int outerIter, int innerIter, double t, AFSpatialDiscretisation *smodel, bool normalized=true, bool nonLinearFlag=true)
 AFSplittedRestorationLS (int model, int outerIter, int innerIter, double t, AFSpatialDiscretisation *smodel, bool normalized=true, bool nonLinearFlag=true)
virtual ~AFSplittedRestorationLS ()
virtual void setHSolver (int model)
virtual void setVSolver (int model)
virtual FImagefilter (FImage *src, FImage *dest=0)
 Local full image filtering.

virtual void report (FILE *file)

Protected Attributes

int solverType
AbsFLinearSolverhSolver
AbsFLinearSolvervSolver
FloatVectorukRow
FloatVectoruk1Row
FloatVectorukCol
FloatVectoruk1Col


Member Function Documentation

FImage * AFSplittedRestorationLS::filter FImage   src,
FImage   dest = 0
[virtual]
 

Local full image filtering.

Parameters:
src  is FImage* is FImage source channel
dest  is FImage* is FImage result/placeholder
Returns :
FImage* as result,

Reimplemented from AbsFRestorationLS.


The documentation for this class was generated from the following files:
SourceForge.net Logo
Restoreinpaint sourceforge project `C++/Java Image Processing, Restoration, Inpainting Project'.

Bernard De Cuyper: Open Project Leader: Concept, design and development.
Bernard De Cuyper & Eddy Fraiha 2002, 2003. Bernard De Cuyper 2004. Open and free, for friendly usage only.
Modifications on Belgium ground of this piece of artistic work, by governement institutions or companies, must be notified to Bernard De Cuyper.
bern_bdc@hotmail.com